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Abstract-—The stability of elastic and viscoelastic rods subjected to a random stationary longitudinal
force is considered. A numerical method of simulation of random realizations of a wide-band
stationary process, corresponding to the variation of the longitudinal force in time. is employed.
For each realization the numerical solution of the system of differential or integro-differential
equations describing the dynamic behavior of the rods is found. With the help of Liapunov exponents
which are calculated for statistical moments of the solution of the equations. the conclusion is made
about the stability with respect to statistical moments. The described approach is applicable for the
solution of similar stochastic problem for plates and shells under the linearized treatment. .- 1997
Elsevier Science Lid. All rights reserved.

1. INTRODUCTION

Problems of the stability of elastic and viscoelastic rods subjected to the longitudinal forces,
which are stochastic stationary processes. were considered by many authors. The greatest
number of results were obtained in the case when the stationary process is supposed to be
a Gaussian white noise. First of all, it must be noted that sufficient conditions for the almost
sure stability of the solution of differential equations under a random perturbation of their
parameters were obtained by Kushner (1967) and Khasminskii (1980). For a special case
of the differential equation of the second order. which describes the behavior of elastic rods
under the stochastic treatment of the problem, similar results were found by Bolotin (1979)
and Kozin (1986). Analogous stability conditions for viscoelastic rods were obtained by
Tylikowski (1990) and Potapov (1993b). Kozin and Prodromou (1971) found sufficient
and necessary conditions of the almost sure stability of linear Ito equations.

A great number of works were devoted to obtaining the stability boundaries with
respect to statistical moments of the solution of differential equations (Khasminskii, 1980
Bolotin. 1979: Kozin, 1986 Potapov, 1985, 1992, 1994a; Drozdov and Kolmanovskii,
1992).

If a longitudinal force is a stationary wide-band process then the problem solution
becomes significantly more complicated. Exact results in the sense of stability with respect
to statistical moments of different order for the elastic rod. lying in a viscous medium, were
found by Potapov (1989). The longitudinal force was assumed in the form of a stationary
process with a fractional-rational spectral density. Sufficient conditions for the almost sure
stability for elastic systems were obtained by Infante (1968), Wiens and Sinha (1984),
Ahmadi Goodarz (1977) and Ariaratnam and Ly (1989). Similar results for viscoelastic
rods were found by Potapov (1994b, c).

It should be stressed that the estimations of stability boundaries, which are obtained
with the help of these sufficient conditions, usually are rather rough. More exact results can
be obtained using an asymptotic method, which is also known as a method of stochastic
averaging (Ariaratnam, 1967, 1972 ; Dimentberg, 1980, 1989 ; Potapov, 1984, 1985). But
these results are applicable only in those cases when the measurements of the material
viscosity and/or external damping are small enough and random fluctuations of the longi-
tudinal force have a small mean-square scattering. This method was proposed by Stra-
tonovich (1963) and proved rigorously by Khasminskii (1966) in a limit theorem.
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If the indicated restrictions are invalid then other methods should be applied for the
stability investigation. One of them is a numerical method of statistical simulation (Potapov,
1990 ; Potapov and Marasanov, 1992). With the help of this method the problem of the
stability can be solved fairly easily for a finite time interval, and is connected with the first
passage problem in the theory of random processes.

In the past time Liapunov exponents have found a wide application for the solution
of the stability problem in different fields of science (Benettin et al., 1980). In particular,
the dynamic stability analysis of viscoelastic structures by Liapunov exponents was carried
out in the works of Aboudi er al. (1990) and Cederbaum ez al. (1991). The asymptotic
method together with Liapunov exponents was used for the investigation of almost sure
stability of stochastic systems by Ariaratnam and Ly (1989), Ariaratnam et al. (1990) and
Ariaratnam and Wei-Chau Xie (1992). The present work is devoted to the investigation of
the stability of elastic and viscoelastic rods on the basis of the method of statistical
simulation combined with the Liapunov exponents method in assumption that the kernel
of the material relaxation is represented by the sum of exponents.

2. TREATMENT OF THE PROBLEM

The dynamic behavior of a flexible perfect viscoelastic rod at small deflections is
described by the equation

w M w
+k— +EI(1-R) — +F—=0. (1
ct cxt cx?

-~
C™W

or

m

Here m is the mass per unit length, w is the transverse deflection, kéw/ct is the term,
describing the external damping, EI is the bending stiffness, F denotes the longitudinal
force and R is the relaxation operator

4 I '}4 | . x
R Ej R(—n Y 4 OgJ R(6)dO < 1.
cx? 0 ax? 0

The function w(z, x) should satisfy the corresponding initial and boundary conditions. Let
us consider a simply supported rod with initial conditions

w(0,x) = £, sin;x, Ww(0, x) = vy sinzx.

[

Then the solution of equation (1) is written in the form

w(t, x) = f(1) sin%.\'.

The deflection amplitude of the rod is found from the integro-differential equation
24+ 0 [(1-R)—2]f=0 (2)
where

n*El Fi?
o= )
mi* n*El

Qe¥ = — =
m

The dot denotes differentiation with respect to the time 7.
Further let us assume that the kernel of the material relaxation R(r— 1) is represented
by the sum of exponents
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A
Ri—1) = ¥ xrLiexp[—xi—1))

After the introduction of the new variables (Tylikowski, 1990 ; Potapov and Mara-
sanov, 1992)

Xy =f x,=/1 X:ﬂ-=J x*L.exp[—y*i—1) flrydr, i=1.2,....k

0

equation (2) may be replaced by the following system of differential equations of the first
order. If we use the dimensionless time 7, = . then this system is written in the form

X = AX (3)
where
0 1 0 0
—(1—-2) =2 1 1
A= XlLl 0 —Xi ce 0 &= 8*//('0 xi= XI*‘/’I(X)‘
XkLk O 0 — Xk

The prime denotes differentiation with respect to dimensionless time ¢,. Furthermore, for
the sake of convenience we will again use the notation ¢ instead of ¢,.

The same approach can be used in the case when the creep curve can be described by
the expression (Arutunian, 1952 ; Potapov, 1993a)

1
&(1) = [m + C(t, ‘r)ilo'(,

C(1.1) = &(1) Z B exp [—yi(t—1)]
K=o

if the functions E(z), {(t) approach constant values, for example, if they are written in the
forms

E(t) = E,(1—e™ "),

m

Sty = Co+ ; A exp(—pfi1)

or

m

é(t) = CO + Z AI/(TI_*_T)
i=1

i

Here > 0.8 >0,4,>0,0,>0,Cy >0, B, > 0.

In this case the integro-differential equation (2) can be written as a system of differential
equations of the first order with varying coefficients approaching, with the passage of time,
to the constant values (Arutunian, 1952 ; Potapov, 1993a).

Let us presuppose that the function a(#) can be written in the form
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(1) = 2y + (1)

where %, = const, ¢(1) is a wide-band stationary process, the mean value of which is equal
to zero.

3. STABILITY OF THE TRIVIAL SOLUTION

The principal purpose of the present work is the investigation of the stability of the
trivial solution of system (3). Nowadays different formulations of the stability of stochastic
systems are well-known. We shall recall some of them, which are used later.

(i) The solution x(¢) = 0 is called p-stable. if for any ¢ > 0, such > 0 can be found
that at r > 0 and |x(0)| < o

K] <.

Angle brackets denote the expected value (ensemble average).

(i1) The solution x(¢) = 0 is called asymptotically p-stable. if it is p-stable and, in
addition, for sufficiently small | x,(0)]

lim [</(1)] = 0.

At p = |. stability in the mean takes place while at p = 2, stability in the mean-square
occurs.

For the numerical solution of the stability problem we will take advantage of the
method of canonical expansion of stationary random process ¢(z). [t is well known that
any stationary process ¢(7) for a finite time interval [0, T] can be represented by the series
(Karhunen. 1947 ; Gikhman and Skorokhod, 1965)

o(1) = Z (U,cos0,t+V,sin6;t)

=0

where U, ¥, are uncorrelated random values, {U,> = (V> = 0. {U;> =V}, 0, = jAb,
Af =2n/T.

For the numerical simulation of the process ¢(¢) we can employ instead of series, the
finite sum with a large value of N

N
oty = Y (U,cos0,t+ V,sin0,1). ()

=0

Here 0, = jAO, A0 = 0,/N, {Us> = S(0)AO, CUGY = (V3 =2S(0)A0,j=1,2,...N.

The value 8, represents an upper cut-off frequency for the two-sided power spectral
density function in such a way that beyond 6, its value may be taken to be zero. Using
realizations of the function ¢(¢). obtained in this way, we can find. with the help of the
Runge-Kutta method, the solution of system of equations (3).

Let us consider peculiarities of obtaining of Liapunov exponents for the investigation
of the stability with respect to statistical moments. It is known that the value, defined by
the expression

g 1 on(z‘)!
/=Ilim-In—=—
= Ix(0) )

is the greatest Liapunov exponent, where ||x(¢}| is the norm of the vector x(#) in Euclidean
space and | x(0)| is the norm of the vector of initial data. Numerically this value can be
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found by the method recommended by Benettin ez al. (1980). With this purpose we will
divide the enough large interval of time [0, 7] into # equal portions of length A =1, , —1¢,.

Let us suppose that at ¢ = ¢, the norm || x(z,)| is equal to unity. Using this vector as the
vector of initial data we will find the solution of the system (3) for time ¢, , with the norm
1%(t,. )| = d;_,. By keeping on solving system (3) with new initial data x,(t,,)/ds,
(j=1,2,...,24+ k) we will obtain the sequence of values 4, and the greatest Liapunov
exponent can be found as the limit

R . l n
Amax = ’!Ln) E ; In df- (5)

i=

If the stability with respect to statistical moments is considered, then the solution is
formed in the following way. Since the closed system of equations for the moments of the
function x(¢) in the case of wide-band stationary process could not be obtained, we will
use the method of statistical data processing. Let us explain this approach for the example
of moments of the second order and stability in the mean-square. The system of equations
with respect to all kinds of products x,x; (4,j=1.2,.... 2+k) can be obtained from the
system of equations (3). The number of such equations is equal to m =(2+k)(3+k)/2.)

7 =Bz (6)
where
=z o D)= (nx) . (nxa,) - (L

In particular for k = 1 the matrix B and the vector z are written as

| 0 2 0 0 0 0 W
—(1 —=) -2¢ ] ] 0
B— xL 0 —X 0 1 0
0 —2(1—2) 0 —4¢ 2 0
xL —(1=2) 0 —(2e4+7x) 1
0 2xL 0 0 -2y
=[5 =z )= (qxe) (X)) (x3) (Xxs) (x)].

Further we can solve this system for each realization of the process x(f) and find
estimations of mathematical expectations of components of the vector z

le
=~y j=1.2.....6 7

i=1

G

where g is the number of realizations. z\" is the magnitude of z; in ith realization.
Let us suppose that at some moment of time the expression

m 12
iz[;cm»ﬂ

is equal to unity. It should be stressed that with the increase of the number ¢ estimation (7)
approaches the mathematical expectation <z,(,)> and the value D,(¢,), to the norm of the
vector (z(z,)> in Euclidean space
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- [z <:,<r,1>>:} B

Assuming the values z;(¢,) as initial data for system (6) we will find its solution fOI; the
interval of time [¢,,7,.,] = [4,,t,+A]. Let us obtain again the values {Z,(¢,,,)) and D, .
Further system (6) is solved for each realization with initial data

:,(l(fn—l =Z,(t,0) ‘D,

The greatest Liapunov exponent with respect to {z;> is equal to

i
A = lim — Z InD,

n— L n

i=1

therefore

= lim LS Z In D, (8)

I)wln

is an approximate of the value A,,.

If A 1s negative then the rod is asymptotically stable in mean-square. It is obvious
that this approach can be simply generalized for the case of stability with respect to
statistical moments of order higher than the second one.

Such an approach, connected with the definition of moments of all kinds of products
of components x,, is employed usually in the cases, when the closed system of equations
with respect to those moments can be formed (for example, if the function ¢(¢) is a
Gaussian white noise). Since in the general case obtaining the indicated system of equations
is impossible then the solution of the formulated problem can be found. starting from
consideration of equation (3) directly.

The estimation of moments {x?) for time moment 7, can be obtained as a result of
statistical average of values x?, derived from the solution of equation (3) for the enough
large number of realizations

(X)) = Z [x7(£)]"

141

where [x7(2,)]? is the magnitude x(z,), corresponding to ith realization of the solution of
equation (3).

Let us assume that the norm of the vector {x”(r,)> in Euclidean space in time moment
1, is equal to unity. In time moment ¢,.; = 1, + A the norm of the vector {x"(t)) becomes
equal to d,, ,. The further system (3) is solved for each realization with initial data

X_/'O([n+l) = -\‘/([n*l).’f(dn- ])l p.

As a result of repeated employment of this procedure the sequence of numbers d; is
used to estimate the Liapunov exponent, defined as

1
/—llm—Zlnd

n— n

The advantage of this approach is contained in the solution of the system of differential
equations, the order of which is lesser in comparison with the order of the system (6).
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Fig. 1. The realization of the solution x,(¢) for the elastic rod.

4. EXAMPLES

Example 1

Let us consider the elastic rod. Systems of eqns (3), (6) are written in the following
way

\1 _ .Y:
Xy = — (1 —a)x, —26x, 9)
and
7=Bz (10)
where
0 2 0 X7
B=|—(1—2) —2¢ 1 Z=|XX5|
0 —=2(1—2) —4¢ X3

The random function ¢(7) is assumed in the form of a Gaussian stationary process,
with the correlation function

K(t) = o’ exp(—9d|t]). (11)

One of the realizations of the solution x,(r), obtained for ¢ = 0.1, 2%, = 0.5, 6 = 0.2,
6 = 0.5, Ar = 0.025, 8, = 50, N = 1000 is represented in Fig. 1. The values x,,, and X,
in this figure are equal to 1.000 and —0.563 for the input data x,(0) = 1.000, x»(0) = 0. A
chart A, ~ nA at q = 5is shown in Fig. 2.

100

nA

Amax

Fig, 2. The function A, ~ nA.

max
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Table 1. Liapunov exponents A, for the elastic rod
as the function of the number of realizations g and
mean-square scattering of the force (N = 1000)

7 g=0 a=0.1 g=102
2 —0.200 —0.198 —0.184
5 —0.200 —0.197 —0.184

10 —0.200 —0.197 —0.183

Results of the solution of system (10) with the help of the Runge-Kutta method (of
the fourth order) at oy, = 0.5; 6 = 0.5; ¢ = 0.1 are presented in Table 1. Table 1 illustrates
the influence of the mean-square scattering of the longitudinal force (parameter ¢) on the
asymptotic stability in mean-square of the rod. It is interesting that the results, obtained
with help of equations (9) and (10), coincide.

To test these results we will take advantage of the asymptotic method (Dimentberg,
1980) for the solution of the same problem. The solution of equations (9) is sought in the
form

X () = AN sinQ(1). ¥, = vA(1)cosQr). Q) = vi+6(), v' =1-—un,.

After some well known transformations we can find the following differential equation for
the moment of second order of the amplitude A4(s)

d, . -
a(A'> = —2(e—4){A"> (12)
where
7 l ~
p=-—®2v), OQ2v)= —J K(1) cos(2vt)y dr.
8\‘2 2” -7

In our case we have

b s .
8 (1 =) [0 +4(1 —2)]

U

The solution of equation (12) is
{A™y = Cexp[—2(c—4p)1].
Thus, the Liapunov exponent A, is equal to
Apax = —2(e—4u). (13)

Ate=0.1;0=0.5;2=0.5;0 =0.1 and ¢ = 0.2 from here it follows A, = —0.196
and —0.182, respectively. The comparison of these values with corresponding magnitudes
in Table 1 shows that the numerical and asymptotic methods give close enough results. We
should bear in mind that expression (13) is obtained for a small mean-square scattering of
the random function ¢(r) and a small value of the parameter . Therefore the value A, is
approximate too.
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Fig. 3. The realization of the solution x,(¢) for the viscoelastic rod.

Example 2
Let us consider the viscoelastic rod, the relaxation kernel of which has the form

R(t—1) = yLexp [—x(1—1)].

The influence of viscous properties of the material on the behavior of the rod can be
evaluated with help of realization x,(r). represented in Fig. 3. This chart corresponds to the
inputdatae =0,y =0.1,L =0.1,% =0.5,0 =0.2,0 = 0.5, Ar = 0.025, 6, = 50, N = 1000
and x,(0) = 1.000, x,(0) = 0., x4(0) = 0. The values x,,, and x,, in this figure are equal
to 1.000 and —0.95.

In Table 2 the results are presented, which are found for the correlation function (11)
and next input data e =0, x = 0.1, L = 0.1, 2, = 0.5, 6 = 0.5. For the test of these results
the asymptotic method can also be applied (Potapov. 1984 ; 1985). The expression for the
statistical moment of the second order for the deflection amplitude is written in our case as
(ate=0)

{(A™y = Cexp(it).

where

1 2(5 2 1
j = [ — AxL(lJr X»‘> } (14)
1= 0" +4(1—u,) I—2

Atay,=05:x=01:L=0.10=0.1and ¢ = 0.2 we have from here A, = —0.015
and —0.002, respectively.

The comparison of these values with corresponding magnitudes in Table 2 shows that
the numerical and asymptotic method gives sufficiently close results for viscoelastic rods
too. It must be noticed that the results, obtained with help of equation (3) at y, = ¥,
1 ="=% =0, L, = L and equation (6) coincide.

5. CONCLUSION

In the present work an effective numerical method for the investigation of the stability
of elastic and viscoelastic rods under stochastic and periodic excitation is proposed. This

Table 2. Values of Liapunov exponents

A for the viscoelastic rod as the function

of the mean-square scattering of the force
(N = 1000. ¢4 = 10)

a Avas
0 —0.020
0.1 -0.018

0.2 —0.001
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method is based on the calculation of Liapunov exponents. The comparison of the obtained
results with analytical results, found with the help of the asymptotic method, shows that
they are close enough. In the paper all arguments were made as applied columns, but the
very same method can be used for the solution of the problem for perfect elastic and
viscoelastic plates and shells under a linearized treatment. The considered method makes it
possible to estimate the stability with respect to statistical moments of different order.

The suggested method can be used for the investigation of elastic and viscoelastic
systems whose material properties and geometric parameters are random values or functions
(Potapov, 1990 ; Potapov and Marasanov, 1992).
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